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Abstract
We present an analytical description of the motion in the singular logarithmic
potential of the form � = ln

√
x2

1

/
b2 + x2

2 , a potential which plays an important
role in the modelling of triaxial systems (such as elliptical galaxies) or bars in
the centres of galaxy discs. In order to obtain information about the motion
near the singularity, we resort to McGehee-type transformations and regularize
the vector field. In the axis-symmetric case (b = 1), we offer a complete
description of the global dynamics. In the non-axis-symmetric case (b < 1),

we prove that all orbits, with the exception of a negligible set, are centrophobic
and retrieve numerically partial aspects of the orbital structure.

PACS numbers: 45.50.Pk, 98.10.+z

1. Introduction

The non-axis-symmetric logarithmic potential plays an important role in galaxy dynamics. In
the three-dimensional space, the potential

� = 1

2
ln

(
Rc

2 +
x1

2

b2
+ x2

2

)
(1.1)

(where (x1, x2) are the usual cylindrical coordinates x1 = z, x2 = R) models an elliptical
galaxy with a dense core of radius Rc and with the additional property of having a flat
rotation curve at large radii [2]. In the 2D space, the logarithmic potential can describe other
non-axis-symmetric components of galaxies, such as bars in the centres of galaxy discs.

The study of the orbital structure of the logarithmic potential was initially motivated by the
need to construct self-consistent models of galaxies [14]. Numerical experiments have proved
to be very useful in revealing the rich orbital structure of this potential, including the major
orbit families, the resonances and the stochastic orbits. For example, in the axis-symmetric
case (b = 1), the logarithmic potential has been shown to admit only loop orbits, which are
regular and avoid the origin. The non-axis-symmetric (b < 1) potential admits two major
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families of orbits: box (for ρ = √
R2 + z2 � Rc) and loop orbits (for ρ � Rc) [1, 11]. Note

that this behaviour can also be retrieved from the two simple analytical approximations of the
potential, one as a sum of two oscillators very close to the origin and the other one as ∼ln (ρ)

at large distances [2].
An interesting change in the orbital behaviour has been discovered when the potential

becomes singular. In their numerical study, Miralda-Escudé and Schwarzschild [10] have
found that as Rc → 0, a larger fraction of regular box orbits becomes irregular or ‘box-like’
(i.e. they will admit fewer integrals of motion than the number of spatial dimensions), with
the end result that, in the limit Rc = 0, all box orbits are irregular. The general interpretation
of this result is that the scattering by the singularity renders the box orbits unstable, a similar
behaviour to that observed in systems which contain a central black hole [6]. In addition,
the singular logarithmic potential admits several families of minor orbits, i.e., resonances in
terms of the x2:x1 frequency ratio: the banana (2:1), fish (3:2) and pretzel (4:3) orbits [10].
Numerical studies have also revealed the existence of some stochastic orbits in a narrow region
near the singularity [10, 15]. This has led some to suggest a link between the scattering by the
singularity and the transition to chaos [3], although no rigorous proof has been given to date
in support of this hypothesis.

The present investigation is an analytical approach to the study of the orbital dynamics
(including the behaviour near the singularity) in the case of the singular logarithmic potential:

� = 1

2
ln

(
x1

2

b2
+ x2

2

)
(1.2)

in both the axis-symmetric and non-axis-symmetric cases. The aim of our work is not only
to complement the previous numerical studies performed on this subject, but also to offer a
theoretical basis for interpreting their results.

The main difficulty in investigating the system analytically is due to the presence of the
singularity in the origin, which creates a discontinuity in the equations of motion. This problem
motivates the introduction of a change of coordinates that regularizes the equations of motion.
For this, we resort to McGehee-type transformations [9], a technique that is frequently used
in celestial mechanics for the study of singularities in the n-body problem (n = 1, 2, 3, . . .).

The underlying idea behind this technique is to transform the equations of motions and
the time, such that the singularity is ‘blown-up’ into a non-trivial manifold (in our case a
torus). By studying the characteristics of the flow on this manifold, one can extrapolate the
information (by continuity with respect to the initial data) about the orbital dynamics around the
singularity [13].

The paper is organized as follows. Sections 2 and 3 provide a brief description of our
system, in terms of the equations of motion and the conservation of energy. In section 4, we
remove the singularity by regularizing the equations of motion. In section 5, we provide a
description of the collision manifold and the zero-velocity manifold, two abstract surfaces on
which we can visualize the properties of the flow close to the singularity and at the maximum
distance from the source allowed for a given energy, respectively. Section 6 presents the
complete global dynamics in the axis-symmetric case (b = 1). In section 7, we extend
the analysis for the case of the non-axis-symmetric potential (b �= 1), in the restricted limit
in which the anisotropy is small. In this case, we prove theoretically that the majority of
orbits in this case are centrophobic (that is, they avoid the origin)—a result that has been
originally discovered in the numerical study of Miralda-Escudé and Schwarzschild [10]—and
we discuss the orbital structure in terms of orbits which preserve or change the sign of their
angular momentum. Finally, in section 8, we show how several families of resonances can be
retrieved through the numerical integration of the new system of equations.
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2. The equations of motion

The non-axis-symmetric logarithmic problem is a one-parameter Hamiltonian system with
two degrees of freedom. The anisotropic logarithmic singular potential (1.2) determines a
conservative system with a preserved Hamiltonian given by

H(x1, x2, y1, y2) = 1

2

(
y1

2 + y2
2
)

+ ln

(√
x1

2

b2
+ x2

2

)
(2.1)

where (x1, x2) ∈ R
2
+ − {(0, 0)} are the generalized coordinates and (y1, y2) ∈ R are the

momenta.
We start by writing the equations of motion in a form that contains the anisotropy in

the kinetic term rather than in the potential. Thus, we substitute q1 = x1/b
2, q2 = x2, and

p1 = y1/b
2, p2 = y2. Introducing the (standard) notation for the generalized vector coordinate

q = (q1, q2), the generalized momenta p = (p1, p2), the anisotropy parameter µ = 1
b2 and

the mass matrix

M =
(

µ 0
0 1

)
the Hamiltonian can be written as

H(q, p) = 1
2 pT Mp + ln |q| (2.2)

and the anisotropic logarithmic problem is given as the first-order system of ordinary
differential equations:{

q̇ = Mp

ṗ = − q
|q|3 .

(2.3)

When µ = 1, the above system describes the motion in the axis-symmetric logarithmic
potential. From the point of view of Hamiltonian mechanics this case is completely integrable,
as we have the two integrals of motion given by the conservation of the total energy and the
total angular momentum. However, we point out that for |q| → 0 the dynamical behaviour
becomes unknown since the vector field (q̇, ṗ) ceases to exist.

Let K be the kinetic energy,

K = 1
2 pT Mp (2.4)

and V the potential,

V = ln |q|. (2.5)

The total energy E is then

H(q, p) = K + V. (2.6)

Since the system (2.3) is Hamiltonian the total energy is conserved. That is H(q, p) is constant
along the solution curves of (2.3) and consequently the level sets of H(q, p) are invariant under
the flow. If h is a certain energy constant (i.e. H(q, p) = h = constant) then the level set
H(q, p)−1(h) is a three-dimensional surface usually called an energy surface, which we denote
by �h.

3. Topological description of the energy surfaces

We consider in more detail the topology of various surfaces �h, including the orbits near the
singularity. Let us fix h ∈ R. Using a technique similar to McGehee’s [9] we introduce the
change of variables:
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q = r e− 1

r2 s

p = 1
r
u

(3.1)

where r > 0, s is a point on the unit circle S
1 and u ∈ R

2. Our transformation is a
diffeomorphism from R

2 \ {(0, 0)} × R
2 to (0,∞) × S

1 × R
2 (where S

1 is the unit circle) and
can be understood as a passing to some unorthodox kind of polar coordinates.

The system (2.3) becomes


ṙ = r

r2 + 2
e

1
r2 sT Mu

ṡ = 1

r2
e

1
r2 [Mu − (sT Mu) · s]

u̇ = e
1
r2

[
1

r + 2
(sT Mu) · u − s

] (3.2)

and the conservation of energy transforms to

1
2 uT Mu + r2 ln r − 1 = hr2. (3.3)

Note that the new system (3.2) is analytic on the open manifold (0,∞) × S
1 × R

2 and
that the regions of motion are constrained by the energy relation (3.3). More precisely, since
the kinetic term in (3.3) is positive, we have that for a fixed level of energy h:

hr2 − r2 ln r + 1 � 0. (3.4)

Solving the above relation, it follows that 0 < r < Rmax with Rmax = Rmax(h). In other words
the motion is always bounded for any fixed level of energy h. Also, we can say that the energy
surface �h projects onto a disc of radius Rmax in R

2 \ (0, 0). Since

1
2 uT Mu = hr2 − r2 ln r + 1 (3.5)

it follows that along the r = Rmax boundary we have u = 0, that is the kinetic term cancels.
For this reason the curve{

r = Rmax

u = 0
(3.6)

is called the oval of zero velocity in �h. In physical space, this curve represents the outermost
boundary of the orbital structure allowed for a given energy. We will denote this curve by Z.

Proposition 3.1. For any fixed level of energy h the energy surface �h is diffeomorphic to an
open solid torus (i.e., a solid torus minus its boundary).

Proof. The proof follows closely the proof of proposition 1.1 in [4]. Let B be the interior of
the ellipse

1
2 uT Mu = 1

in the plane. Clearly B is topologically equivalent to S
1 × (0, Rmax] (r = 0 corresponds to the

missing boundary of the ellipse). Then we define F : �h −→ S
1 × B by

F(r, s, u) = (s, u).

F is just the required diffeomorphism. �
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4. Regularization of the vector field

The objective of this section is twofold: to extend the energy relation to r = 0, and to regularize
the system (3.3) such that the new vector field becomes differentiable over the entire interval
r ∈ [0, Rmax].

The energy relation (3.3) is ill-defined at the singularity r = 0. However, the function
r2 ln r can be continuously extended for r = 0 by

f (r) =
{

r2 ln r if r > 0

0 if r = 0.
(4.1)

The extended function (4.1) is also differentiable over its domain. Therefore we are able to
extend the energy manifold by

1
2 uT Mu + f (r) − 1 = hr2 (4.2)

for all r ∈ [0, Rmax].
Now we will introduce a sequence of transformations of the system (3.2) such that the new

system will have no singularity at r = 0. Following the technique introduced by McGehee [9],
we want to paste an invariant manifold onto the phase space, such that we close the open solid
torus that bounds the motion, by including its boundary r = 0. Also, in order to preserve the
continuity of the flow with respect to the initial data, we have to ensure that the transformed
system has a differentiable vector field.

We implement a change of the time variable through dσ = −e
1
r2 r2 dt . This will have the

effect of decreasing the rate of the time intervals near the singularity. Expressed in the new
time derivative d

dσ
, the system (3.2) becomes


ṙ = − r3

r2+2 sT Mu

ṡ = (sT Mu) · s − Mu

u̇ = r2
[
s − 1

r2+2 (sT Mu) · u
]
.

(4.3)

We note that by the above sequence of reparametrizations we have obtained an analytic vector
field for (r, s, u) ∈ [0, Rmax]×S

1 ×R
2, which is coupled with a differentiable integral relation

given by (4.2).
It follows from (4.2) that each energy surface �h meets the boundary r = 0 along a

submanifold given by{
1
2 uT Mu = 1

s arbitrary.
(4.4)

This manifold, let us call it �, is diffeomorphic with a two-dimensional torus, which we shall
call the collision manifold. This fictitious torus has no meaning in the physical space, since the
motion ceases to exist in the origin. However, the behaviour of the orbits near the singularity
can be extrapolated from similar properties of the flow on the collision manifold. In this sense,
we regard the differential system of equations as a vector field on the manifold, its solutions
representing the flow.

Note that � is independent of the total energy and therefore we can say that the time
transformations we have applied have the effect of pasting an invariant boundary onto each
�h. Over this boundary the vector field is given by{

ṡ = (sT Mu) · s − Mu

u̇ = 0.
(4.5)
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The solid and now compact torus �h bounds all the orbits and by investigating its
properties, one can obtain a global picture of the motion, including the motion near the
singularity. We emphasize that the orbits of system (2.3) are the same as the orbits of system
(4.3), only the parametrization is different. Therefore, any results concerning the solutions of
the first system can be seen as results for the solutions of the second, as long as one is aware
of the fact that the rate at which solutions move along the orbits is different.

Using the energy integral we can further reduce the dimension of the system. For this, we
express the coordinates (s, u) in terms of the new angle coordinates θ and ψ :


s = (cos θ, sin θ)

u =
√

2(hr2 − f (r) + 1)

(
1√
µ

cos ψ, sin ψ

)
.

(4.6)

Also, in order to further simplify the system, we perform a similar time parametrization which
incorporates a part of the radial dependence in a new time variable:

ds =
√

2(hr2 − f (r) + 1) dσ. (4.7)

In these variables, the system (4.3) becomes a first-order system for (r, θ, ψ) ∈ [0, Rmax] ×
S

1 × S
1 with a differentiable vector field:


ṙ = −

(
r3

r2 + 2

)
2(hr2 − f (r) + 1)(

√
µ cos θ cos ψ + sin θ sin ψ)

θ̇ = 2(hr2 − f (r) + 1)(
√

µ cos ψ sin θ − sin ψ cos θ)

ψ̇ = r2(cos ψ sin θ − √
µ sin ψ cos θ).

(4.8)

Before discussing different aspects of the dynamics of the above system, we make two
more observations.

Observation 1. Up to this point, no reference was made to the angular momentum integral.
It is well known that in the axis-symmetric case (µ = 1), the singular logarithmic system
admits, besides the total energy, a second conserved quantity, namely the angular momentum
C := q2p1 − q1p2. In terms of (r, θ, ψ) this reads

C(s) = e−1/r2
2[hr2 − f (r) + 1][

√
µ sin θ cos ψ − cos θ sin ψ] (4.9)

where s is the final time variable introduced in (4.7).
Like the energy relation, C(s) is ill-defined at the singularity. In an analogous way, we

extend the function e−1/r2
continuously at r = 0 by defining the function

g(r) =
{

e−1/r2
if r > 0

0 if r = 0.
(4.10)

The angular momentum is now well defined and differentiable for all r � 0. For the axis-
symmetric case (µ = 1), the law of conservation of angular momentum ensures that

dC

ds
= 0 (4.11)

and therefore we have the integral relation

C(s) = g(r)2[hr2 − f (r) + 1] sin(θ − ψ) = const. (4.12)

In the anisotropic case (µ �= 1) the above symmetry is lost. The anisotropy is responsible for
the much more complicated dynamics and, eventually, for the existence of the chaotic motion.
For later purposes, we write the variation of angular momentum

dC

dt
= (1 − µ)p1p2 (4.13)
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θ

ψπ π20 π/2

3π/2

π/2

π

π2

3π/2

C

C

C

Figure 1. On the collision manifold, the flow follows the parallel lines ψ = ψ0 = const. The flow
vanishes on the equilibrium curves C+ and C−.

in terms of the new variables and time:

d

ds
(e−1/r2

θ̇ ) = 1 − µ√
µ

e−1/r2
2[hr2 − f (r) + 1]3/2 sin ψ cos ψ. (4.14)

Observation 2. The orbital dynamics of the system (4.8) does not depend on the level of
energy h. More precisely, each different but fixed h gives rise to the same qualitative phase
portrait. The only change is in the value of Rmax, as Rmax depends directly on h. Therefore,
without losing generality, and in order to simplify the calculations, we choose from now on to
work with h = 0.

5. The collision manifold and the zero-velocity manifold

The flow on the invariant collision manifold � is given by imposing the restriction r = 0 to
the system (4.8):{

θ̇ = 2(
√

µ cos ψ sin θ − sin ψ cos θ)

ψ̇ = 0.
(5.1)

We obtain a family of solutions ψ = ψ0 = const, whereas the vector field vanishes
along the deformed circles {(θ, ψ)|ψ = ψ0,

√
µ cos ψ0 sin θ − sin ψ0 cos θ = 0}. Note that

for µ = 1, the curves of equilibria transform into circles given by {(θ, ψ)|ψ = ψ0, θ =
ψ0, θ = π + ψ0}. For the general case µ �= 1, let us denote by C+ the equilibrium curve
that passes through θ = ψ = 0 and by C− the curve that passes through θ = ψ = π. It is
immediate that C+ is a repeller and C− is an attractor. The dynamical behaviour on the
collision manifold � is illustrated in figure 1. Since ψ̇ = 0, the flow follows the parallel lines
ψ = ψ0 = const.
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θ

ψ

π

ππ/2 3π/2

π/2

3π/2

2π

0

V

V

V

Figure 2. On the zero-velocity manifold, the flow follows the parallel lines θ = θ0 = const. The
flow vanishes on the equilibrium curves V + and V −.

Similarly, for r = Rmax we obtain another invariant manifold 	 = 	h for (4.8), namely
the manifold corresponding to the oval of zero velocity. Recall that Rmax is the value which
cancels hr2 + 1 − f (r) = 1 − f (r) (h is set to zero). The flow on 	 is given by{

θ̇ = 0

ψ̇ = R2
max(cos ψ sin θ − √

µ sin ψ cos θ).
(5.2)

The dynamical behaviour on the zero-velocity manifold is similar to that on the collision
manifold: the torus (r, θ, ψ) ∈ Rmax × S

1 × S
1 that represents 	0 is covered by orbits

parallel to θ = θ0 = const. There are again, two skewed circles of equilibria, {(θ, ψ)|θ =
θ0, cos ψ sin θ − √

µ sin ψ cos θ = 0}. Denoting by V + the curve that passes through (0, 0)

and by V − the curve that passes through (0, π), it follows that V + is an attractor and V − is a
repeller (see figure 2).

6. Global dynamics of the axis-symmetric system (µ = 1)

We now return to the full system (4.8) and, taking into account that (at least in a prime analysis)
the anisotropy is given by values of µ close to 1 but greater than 1, we define the parameter
ε := √

µ − 1 > 0, which we will later treat as a small perturbation to the isotropic system.
We also choose to work with the relative angle ϕ := θ − ψ , instead of the angle θ. Then,
written in terms of ε and (r, ϕ, ψ) and neglecting the terms of order ε2 and higher, the system
(4.8) becomes 



ṙ = − r3

r2 + 2
2(1 − f (r))[cos ϕ + ε cos(ϕ + ψ) cos ψ]

ϕ̇ = [2(1 − f (r)) − r2] sin ϕ

+ ε[2(1 − f (r)) cos ψ sin(ϕ + ψ) + r2 sin ψ cos(ϕ + ψ)]

ψ̇ = r2[sin ϕ − ε sin ψ cos(ϕ + ψ)].

(6.1)
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In the absence of the small perturbation (ε = 0), that is in the axis-symmetric case µ = 1,

the above system reduces to


ṙ = − r3

r2 + 2
2(1 − f (r)) cos ϕ

ϕ̇ = [2(1 − f (r)) − r2] sin ϕ

ψ̇ = r2 sin ϕ

(6.2)

with (r, ϕ, ψ) on the solid torus [0, Rmax] × S
1 × S

1. The equilibrium solutions form two
circles along ϕ = 0 and ϕ = π and are given by (0, 0, ψ0) and (0, π, ψ0) where ψ0 can be
any value in [0, 2π ].

There are four invariant manifolds:

• the collision manifold (at r = 0), on which the dynamics is given by{
ϕ̇ = 2 sin ϕ

ψ̇ = 0.
(6.3)

• the zero-velocity manifold (at r = Rmax), on which we have{
ϕ̇ = −R2

max sin ϕ

ψ̇ = R2
max sin ϕ

(6.4)

or just dϕ

dψ
= −1.

• the ‘sin ϕ = 0’ manifolds (when ϕ = 0 or ϕ = π ), with


ṙ = − r3

r2 + 2
2(1 − f (r)) if ϕ = 0

ṙ = r3

r2 + 2
2(1 − f (r)) if ϕ = π.

(6.5)

Recall that in the unperturbed case the angular momentum is conserved. In this case (see
observation 1):

C(s) = g(r)2(1 − f (r)) sin ϕ = C = const (6.6)

for all r ∈ [0, Rmax]. It is easy to see that

C = 0 ⇐⇒ [r = 0 or r = Rmax or sin ϕ = 0]. (6.7)

In other words, the angular momentum is null (i.e. the motion is rectilinear) if and only if the
orbits are either on the collision manifold, or on the zero-velocity manifold, or connecting
the two. From this perspective, we can denote the surfaces ‘sin ϕ = 0’ as manifolds of zero
angular momentum. Thus we have:

Proposition 6.1. In the axis-symmetric singular logarithmic problem the only orbits reaching
the collision are the rectilinear ones.

Proposition 6.2. In the axis-symmetric singular logarithmic problem all orbits with nonzero
angular momentum are bounded, they do not fall/eject into/from the source, and they do not
reach maximum distance with respect to the source.

We return to the analysis of the unperturbed system (6.2) and note that the system decouples
in the sense that the first two equations are independent of ψ. Thus, if one solves the equations
of r and ϕ, then ψ is obtained by replacing the expressions for r and ϕ into the third equation
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π 2ππ/2 3π/20

Rmax

R0

r

ϕ

Figure 3. The reduced phase space (r, ϕ) in the case µ = 1. There are six equilibrium points: two
centres, (R0, π/2) and (R0, 3π/2), and four saddle equilibria, (0, 0), (0, π), (Rmax, 0) and
(Rmax, π).

and then integrating. Therefore, a detailed qualitative analysis of the reduced system
ṙ = − r3

r2 + 2
2(1 − f (r)) cos ϕ

ϕ̇ = [2(1 − f (r)) − r2] sin ϕ

(6.8)

is extremely useful, as it may be extended to the full (r, ϕ, ψ) space by introducing the third
coordinate ψ at the end of our investigation.

The reduced system is relatively easy to describe. The motion takes place on
the cylinder [0, Rmax] × S

1. There are four degenerate saddle equilibria located at
(0, 0), (0, π), (Rmax, 0), (Rmax, π), and two centres at (R0, π/2) and (R0, 3π/2), where R0

is the solution of the equation 2(1 − f (r)) − r2 = 0. A direct computation shows that the
eigenvalues for the centres are given by λ1,2 = ±iR2

0

√
2
(
R2

0 + 2
)/

(R0 + 2). Also, there are
four invariant manifolds {r = 0}, {r = Rmax}, {ϕ = 0} and {ϕ = π}, forming two heteroclinic
cycles connecting the saddle equilibria (see figure 3).

We now lift the dynamics from the (r, ϕ) phase space into the full (r, ϕ, ψ) solid torus by
taking into consideration the third ψ ∈ S

1 coordinate, as well as the dynamics on the collision
manifold, zero-velocity manifold and the ‘sin ϕ = 0’ zero angular momentum manifolds.

The global flow, which takes place in the solid torus [0, Rmax] × S
1 × S

1, can be seen in
figure 4 and is represented as follows:

• The outside boundary corresponds to the collision manifold {r = 0}.
• The interior boundary corresponds to {r = Rmax}. The centred circle of the torus was

‘blown up’ artificially to an inside torus such that the dynamics on the zero-velocity
manifold can be seen (this is just a visual artefact and does not modify the analysis).

• The motion takes place in between the exterior boundary {r = 0} and the interior boundary
{r = Rmax}.

• The surface of zero angular momentum ‘sin ϕ = 0’ divides the space into two distinct
global invariant manifolds: one corresponding to ϕ ∈ (0, π) or, equivalently, to motion
with positive angular momentum (C > 0), and the other corresponding to ϕ ∈ (π, 2π) or
simply, to C < 0; the flow is symmetric with respect to the horizontal plane C = 0. In this
latter plane, the physical motion is rectilinear and represents orbits that are ejecting from
the collision manifold, reaching the maximum distance at the zero-velocity manifold and
falling back on the collision manifold.
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 ψ = 0
ψ=π ψ=2πϕ=0

ϕ = π/2

ϕ = 3π/2

C<0

r = Rmaxr = 0

ϕ = π

a

b

c
d

e

f

g
h

periodic orbit r = R }0

}

surface } surface }} }

C>0

Figure 4. The global flow in the axis-symmetric case (µ = 1), described in a solid torus delineated
by the two surfaces {r = 0} and {r = Rmax}. The full lines denote the heteroclinic cycle for the
case ψ0 = 0. The horizontal plane (C = 0) divides the phase space into two symmetric invariant
subspaces (see text for details).

• There are two periodic orbits situated symmetrically with respect to the horizontal plane
(C = 0), namely {(r, ϕ, ψ)|r = R0, ϕ = π/2, ψ = ψ0 + R0s; s � 0, ψ0 = ψ(0)}
and {(r, ϕ, ψ)|r = R0, ϕ = 3π/2, ψ = ψ0 − R0s; s � 0, ψ0 = ψ(0)}. Around those
two periodic orbits, the phase space is foliated by tori-like surfaces, parametrized by the
angular momentum integral (6.6).

• The equilibria on the collision manifold are connected with the equilibria on the zero-
velocity manifold, through heteroclinic cycles of the form

a −→ b −→ c −→ d −→ e −→ f −→ g −→ h −→ a

where a = (0, 0, ψ0), b = (0, π, ψ0), c = (Rmax, π, ψ0), d = (Rmax, 0, ψ0 + π), e =
(0, 0, ψ0 + π), f = (0, π, ψ0 + π), g = (Rmax, π, ψ0 + π) and h = (Rmax, 0, ψ0 + 2π) ≡
(Rmax, 0, ψ0), for each fixed ψ0 fixed in [0, 2π ] corresponding to one cycle.

Let us look at the surfaces with positive values of the angular momentum, C > 0 (for
negative C, by symmetry, the flow is identical but in the opposite sense). Since each value
C = const represents a tori-like surface, the space contains a series of invariant manifolds
nested one into the other. C varies from 0 to a maximal value corresponding to the degenerate
torus r = R0, i.e. a circle (see figure 5).

The dynamics will change as one shifts from the tori close to C = 0 towards the tori
near the periodic orbit r = R0. In the (ϕ, ψ) plane, the orbits close to the collision manifold
{r = 0} have very large slopes dϕ/dψ (for example, the orbits on c1 in figure 5). The orbits
close to the periodic orbit r = R0 have slopes close to −1 (e.g., the orbits on c3 in figure 5).
In between, there is a smooth transition in the values of the slopes (one has to keep in mind
that the flow is continuous and therefore orbits which are initially close have to stay close at
all times).

For a fixed value of C or, in other words, for a fixed torus, the motion is bounded between a
minimum and a maximum value, which depend directly on C. We note that in the real physical
space (x1, x2), this translates into a bounded motion between a minimum and a maximum
value, representing a loop orbit. The periodic solutions, (R0, π/2, ψ) and (R0, 3π/2, ψ),
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3
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Figure 5. Section on the solid torus at ψ = ψ0. Around the two periodic orbits r = R0, the phase
space is foliated by tori-like surfaces of constant angular momentum, C.

correspond to the two parent families of the loop orbits, one anticlockwise (C > 0) and the
other clockwise (C < 0) [2]. We shall discuss the family of loop orbits in more detail in
sections 7 and 8.

7. Dynamics of the non-axis-symmetric system (µ �= 1)

In this section, we proceed to investigate the general form of the non-axis-symmetric
system (6.1). We will limit our analysis to the case in which the anisotropy is small (µ � 1)

and therefore we can treat it as a small perturbation (ε = √
µ−1 > 0) to the isotropic system.

In the following, we derive the curves of equilibria on the collision manifold and on the
zero-velocity manifold. We observe that these curves, located in the horizontal plane (C = 0),

remain upon the perturbation within O(ε) distance of this plane. We then prove that most
orbits in the perturbed case avoid the origin, a result initially discovered in the numerical study
of Miralda-Escudé and Schwarzschild [10]. For this, we show that the curves of equilibria on
the collision manifold are degenerate saddles, i.e. the equilibrium points on these curves admit
a 2D stable and a 2D unstable manifold. The implication is that, in the three-dimensional
space, the dimension of the set of initial conditions leading to collision is 2 (i.e., the Lebesgue
measure of the set is zero). In physical space this translates into a zero probability of finding
orbits falling into the source.

Lemma 7.1. The equilibria of the vector field (6.1) consist of four closed curves, two belonging
to the collision manifold and the other two to the zero-velocity manifold. The collision manifold
curves of equilibria are given by

C1 := {(r, ϕ, ψ) | r = 0, ϕ = arctan[(1 − ε) tan ψ] − ψ,ψ = ψ0 ∈ [0, 2π)} ∪
∪(0, 0, π/2) ∪ (0, 0, 3π/2) (7.1)

and

C2 := {(r, ϕ, ψ) | r = 0, ϕ = π + arctan[(1 − ε) tan ψ] − ψ,ψ = ψ0 ∈ [0, 2π)} ∪
∪(0, π, π/2) ∪ (0, π, 3π/2). (7.2)
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The flow on the zero-velocity manifold
The flow on the collision manifold

C1
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(

(
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)
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Figure 6. The curves of equilibria Z1 and C1, located on the collision manifold and on the
zero-velocity manifold, respectively. Each equilibrium point on these two curves behaves like a
degenerate saddle.

The curves of equilibria on the zero-velocity manifold are given by

Z1 := {(r, ϕ, ψ) | r = Rmax, ϕ = arctan[(1 + ε) tan ψ] − ψ,ψ = ψ0 ∈ [0, 2π)} ∪
(Rmax, 0, π/2) ∪ (Rmax, 0, 3π/2) (7.3)

and

Z2 := {(r, ϕ, ψ) | r = Rmax, ϕ = π + arctan[(1 + ε) tan ψ] − ψ,ψ = ψ0 ∈ [0, 2π)} ∪
(Rmax, π, π/2) ∪ (Rmax, π, 3π/2). (7.4)

Proof. The proof follows by inspection. One can verify directly that the two families of curves
cancel the vector field. To see that there are no other equilibria, suppose r �= 0 and r �= Rmax.

Then ṙ = 0 and ψ̇ = 0 lead to{
(1 + ε) cos(ϕ + ψ) cos ψ = −sin(ϕ + ψ) sin ψ

(1 + ε) cos(ϕ + ψ) sin ψ = sin(ϕ + ψ) cos ψ.

It is easy to check that the above relations cannot coexist. �

Observation 7.2. C1 and C2 are within O(ε) distance of the circles

{(r, ϕ, ψ) | r = 0, ϕ = 0, ψ = ψ0 ∈ [0, 2π)}
and respectively,

{(r, ϕ, ψ) | r = 0, ϕ = π,ψ = ψ0 ∈ [0, 2π)}.
Also, on the zero-velocity manifold, Z1 and Z2 are within O(ε) distance of the circles

{(r, ϕ, ψ) | r = Rmax, ϕ = 0, ψ = ψ0 ∈ [0, 2π)}
and

{(r, ϕ, ψ) | r = Rmax, ϕ = π,ψ = ψ0 ∈ [0, 2π)}
respectively.

Lemma 7.3. The curves of equilibria Z1 and Z2 on the zero-velocity manifold are degenerate
saddles (see figure 6). More precisely, for a fixed ψ0, the two corresponding equilibria

(Rmax, arctan[(1 + ε) tan ψ0] − ψ0, ψ0) ∈ Z1
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and

(Rmax, π + arctan[(1 + ε) tan ψ0] − ψ0, ψ0) ∈ Z2

behave like saddles in the (r, ϕ) plane.

Proof. Recall from section 6 that on the zero-velocity manifold the flow is degenerate and in
the (ϕ, ψ) coordinates it reads{

ϕ̇ = −R2
max[sin(ϕ + ψ) cos ψ − (1 + ε) cos(ϕ + ψ) sin ψ]

ψ̇ = R2
max[sin(ϕ + ψ) cos ψ − (1 + ε) cos(ϕ + ψ) sin ψ].

By symmetry, it is sufficient to study the flow around one of the curves of equilibria, say
Z1 (around Z2 we just have to reverse the arrows). For simplicity, for a fixed ψ0, we denote
the ϕ component of the equilibria by ϕZ(ψ0), i.e. ϕZ(ψ0) := arctan[(1 + ε) tan ψ0] − ψ0.

Observe that (Rmax, ϕZ(ψ0), ψ0) are simple roots for ṙ and ϕ̇. Computing the eigenvalues at
(Rmax, ϕZ(ψ0), ψ0), we obtain


λr = − R3

max

R2
max + 2

(−2f ′(Rmax))[cos ϕZ(ψ0) + ε cos(ϕZ(ψ0) + ψ0) cos ψ0]

λϕ = −2 cos(ϕZ(ψ0) + ψ0) cos ψ0 − ε sin(ϕZ(ψ0) + ψ0) sin ψ0

λψ = 0.

Recall that ψ0 is fixed in [0, π/2]. If ψ0 = π/2, we obtain ϕZ(ψ0) = ϕ(π/2) = 0 and


λr = − R3
max

R2
max + 2

(−2f ′(Rmax) > 0

λϕ = −ε < 0

λψ = 0.

Therefore (Rmax, 0, π/2) is a degenerate saddle. If ψ0 ∈ [0, π/2), we have


λr = −(1 + ε)
R3

max

R2
max + 2

(−2f ′(Rmax))
cos(ϕZ(ψ0) + ψ0)

cos ψ0

λϕ = −(2 cos2 ψ0 + ε sin2 ψ0)
cos(ϕZ(ψ0) + ψ0)

cos ψ0

λψ = 0.

Since ψ0 ∈ [0, π/2) and ϕZ(ψ0) = arctan[(1 + ε) tan ψ0] − ψ0, it results that ϕZ(ψ0) + ψ0 ∈
[0, π/2) and furthermore, cos(ϕZ(ψ0) + ψ0) > 0. Therefore λr > 0 and λϕ < 0.

The other cases where ψ0 ∈ (π/2, π) ∪ [π, 3π/2] ∪ (3π/2, 2π) can be treated similarly,
reaching the same conclusion, i.e. the equilibria points Z1 are all degenerate saddles, with


λr > 0

λϕ < 0

λψ = 0.
�

Lemma 7.4. The curves of equilibria C1 and C2 on the collision manifold are degenerate
saddles (see figure 6). More precisely, for a fixed ψ0, the two corresponding equilibria

(0, arctan[(1 − ε) tan ψ0] − ψ0, ψ0) (0, π + arctan[(1 − ε) tan ψ0] − ψ0, ψ0)

behave like degenerate saddles.
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Proof. The equations of the flow on the collision manifold are{
ϕ̇ = 2[(1 + ε) sin(ϕ + ψ) cos ψ − cos(ϕ + ψ) sin ψ]

ψ̇ = 0.

As in the previous proof, it is sufficient to investigate the flow around the equilibria curve
C1 (around C2, by symmetry, we just have to reverse the arrows). Fixing ψ0 ∈ [0, 2π), we
denote the corresponding fixed point on C1 by (0, ϕC(ψ0), ψ0) and proceed to calculate its
eigenvalues. We obtain


λr = 0

λϕ = 2[(1 + ε) cos(ϕC(ψ0) + ψ0) cos ψ0 + sin(ϕC(ψ0) + ψ0) sin ψ0]

λψ = 0.

We observe that the vector field (6.1) manifests a degeneracy around r = 0. This means that
any fixed point on the curve C1 might have a non-hyperbolic character in the (r, ϕ) plane. For
the moment, let us discuss the sign of λϕ. Similar to the analysis in the case of the curve Z1,
we fix ψ0 ∈ [0, π/2]. If ψ0 = π/2, we have ϕC(π/2) = 0 and therefore λϕ = 2 > 0. If
ψ0 ∈ [0, π/2), we obtain

λϕ = sin(ψ0)

(ϕC(ψ0) + ψ0)
.

Since (ϕC(ψ0)+ψ0) = arctan[(1−ε) tan ψ0] ∈ (0, π/2), it follows that sin(ϕC(ψ0) + ψ0) > 0
and therefore λϕ > 0. The same type of reasoning applies for all the other cases, i.e.
for ψ0 ∈ (π/2, π) ∪ [π, 3π/2] ∪ (3π/2, 2π). Therefore we have proved that λϕ > 0
for any fixed ψ0 ∈ [0, 2π).

In conclusion, the flow around the equilibria (0, ϕC(ψ0), ψ0) ∈ C1 is degenerate, with
eigenvalues 


λr = 0

λϕ > 0

λψ = 0. �

Obviously, the linear approximation of the flow does not provide enough information
about the behaviour around the fixed points. Let us take a closer look at the vector field around
(0, ϕC(ψ0), ψ0) ∈ C1.

Note that on the ψ direction the flow is null, as every point on the circle ψ ∈ [0, 2π) is
a parameter for a fixed point. It remains that in order to describe the asymptotical behaviour
around (0, ϕC(ψ0), ψ0), one has to investigate the flow in the (r, ϕ) coordinates. λr = 0
generates the centre manifold Ec, the span of the zero eigenvector [7, 16]. The general theory
ensures the existence of an invariant manifold Wc tangent to Ec at (r, ϕC(ψ0)). Wc may not
be unique and, usually, it involves a loss of smoothness. Also, around the fixed point, Wc is
described by a one-parameter family of curves, i.e. Wc = {(r, ϕ)|ϕ = ϕβ(r), β ∈ R}.

In our case, we will compute Wc directly near (r, ϕC(ψ0)), as follows (see, for example,
[8]): We know that by a proper transformation of coordinates the equations for (r, ϕ) have the
structure 

ṙ = − r3

r2 + 2
2(1 − f (r))F1(ϕ, ψ; ε)

ϕ̇ = λϕ(ϕ − ϕC(ψ0)) + · · · .
(7.5)
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Figure 7. Curves in the ϕβ(r) family around the saddle point (0, ϕC(ψ0)).

Near r = 0, we can make the approximation

r3

r2 + 2
2(1 − f (r)) = r3 1

2
(1 + r2/2 + · · ·)2(1 − f (r)) = r3 + higher order terms (7.6)

(note that we are not expanding f (r), a function that is only differentiable, but we are merely
looking for the dominant term as r goes to zero). Therefore, around (r, ϕC(ψ0)) we have{

ṙ = −ar3 + · · ·
ϕ̇ = λϕ(ϕ − ϕC(ψ0)) + · · · (7.7)

where a := F1(ϕC(ψ0), ψ0; ε) is a positive number. We obtain immediately that

dr

dϕ
= − ar3

λϕ(ϕ − ϕC(ψ0))
(7.8)

with solutions

ϕβ(r) =
{
β eλϕ/(2r2) if r > 0
0 if r = 0

(7.9)

where β ∈ R is a parameter.
We sketch the family of solutions ϕβ(r) in figure 7. As can be easily seen, the fixed point

(0, ϕC(ψ0)) is indeed a saddle.
Since the above reasoning applies for any of the points of equilibria, and using lemmas 7.1

and 7.3, we can state the following:

Theorem 7.5. Let us consider the system (6.1). Then the equilibria are given by the curves
C1, C2, Z1 and Z2, as defined in lemma 7.1, and each of these curves admits a two-dimensional
stable manifold and a two-dimensional unstable manifold.

Corollary 7.6. In the anisotropic logarithmic problem the Lebesgue measure of the set of
initial conditions that lead to collision is zero.
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ϕ = π

r = 0

r = Rmax

ψ = 0 ψ = π/2 ψ = π ψ = 3π/2 ψ = 2π
r = 0

ϕ = 0

ϕ = π/2

C1

Z 1

Z2

C 2

Figure 8. The curves of equilibria C1, C2, Z1, Z2 under the perturbation ε. The arrows show the
behaviour of the flow in their neighbourhood. The manifolds C1 and C2 intersect transversely
along the lines sin ϕ = 0 and cos ϕ = 0.

The last result states that in the phase space the probability of choosing any initial
conditions that lead to collision is zero. The set of such initial conditions is formed by a
two-dimensional manifold embedded in a three-dimensional phase space. Since we reach a
similar conclusion in the isotropic case, we can conclude that for the singular logarithmic
potential the anisotropy does not increase the probability of finding orbits falling into the
source. In other words, we have proved analytically that in the non-axis-symmetric case all
orbits (with the exception of a set with measure zero) are centrophobic, a result that was also
noted in previous numerical studies [10].

We now turn our attention to the behaviour of the angular momentum C(s). Recall that
C(s) was given in (4.9). For h = 0 and in terms of ε and (r, ϕ, ψ), relation (4.9) becomes

C(s) = g(r)2[1 − f (r)][(1 + ε) sin(ϕ + ψ) cos ψ − cos(ϕ + ψ) sin ψ]. (7.10)

We note that under the perturbation, the horizontal surface C = 0 (see figure 4) splits up,
and some of its vestiges are to be found along the two-dimensional stable manifold of C1 and
along the unstable manifold of C2. In physical space, this corresponds to the case of rectilinear
orbits (C = 0), which are falling into or ejecting from the source.

The variation of angular momentum (4.14) reads in our coordinates

dC

ds
= −εg(r)2[1 − f (r)]3/2 sin ψ cos ψ. (7.11)

Since the derivative of C is bounded, there are no ‘blow-up’ type effects in the evolution
of C. Also, since the product g(r)2[1 − f (r)] is always positive, it follows that the critical
points of C(s) correspond to ψ ∈ {0, π/2, π, 3π/2} (see figure 8). These orbits, for which
C(s) displays a sinusoidal-type behaviour and admits four critical points, represent the family
of loop orbits (see also a similar result in the study of Touma and Tremaine [15]).

On the other hand, there are orbits which, under perturbation, will slip in between the
stable manifold of C1 and the unstable manifold of C2, switching the sign of the angular
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Figure 9. The circle r = R0 (thick line) represents one of the parent families of loop orbits. The
dotted line shows the orbital structure that is triggered by applying a perturbation (ε = 0.1), to the
periodic orbit (shown here is the integration only over a finite time).

momentum. By the nature of the phase space, which is a solid torus, these orbits must
wind around indefinitely. These orbits pertain to the family of ‘boxlet’ orbits discovered by
Miralda-Escudé and Schwarzschild [10]. For large perturbations, more and more orbits will
break away from the curves of equilibria C1 and C2, and become boxlet, a result which was
also pointed out in [10]. The separatrix that divides the phase space between loop and boxlet
orbits intersects the (C = 0) plane at ψ = π/2 and ψ = 3π/2 (see [15]). Some of the orbits
that wind up inside the torus will eventually close, becoming the parent orbits of the resonant
families (i.e. banana, fish, pretzel, etc) [10].

We do not present here a rigorous proof for the existence of the boxlet obits or the
resonances, leaving it for a future study. However, we present below a partial result concerning
the orbits which preserve the sign of the angular momentum.

Let us note that the angular momentum can be regarded as a function of two arguments,
namely as C = C(s, ε). Then, around the equilibrium point (s, 0), we have the following
approximation:

C(s, ε) = C(s, 0) + ε
∂C(s, ε)

∂ε

∣∣∣∣∣
ε=0

+ O(ε2) (7.12)

or, in our coordinates,

C(s, ε) = C(s, 0) + εg(r)2[1 − f (r)] sin(ϕ + ψ) cos ψ. (7.13)

But C(s, 0) is a constant, since this is the case of the unperturbed motion, where the angular
momentum is an integral of motion. Denoting C0 := C(s, 0), it follows that

C(s, ε) = C0 + εg(r)2[1 − f (r)] sin(ϕ + ψ) cos ψ. (7.14)

Since εg(r)2[1 − f (r)] sin(ϕ + ψ) cos ψ is bounded, we conclude that C(s) preserves its sign
for large values of C0 and small ε. This is best noticed near the unperturbed periodic orbits,
for example, (r, ϕ, ψ) = (R0, π/2, ψ), ψ ∈ [0, 2π), where C0 = e−1/R2

0 2
(
1 − R2

0 ln R0
)

and
where the perturbation induces loop orbits (see figure 9).
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Figure 10. Orbit around the fish (3:2) resonance.

8. The orbital structure

The orbital structure can also be retrieved numerically, by integrating the general form of the
system (6.1). The return to the initial coordinates in the physical space, (x1, x2), can then be
made through the relations{

x1 = q1/µ = (1/µ)r e(−1/r2) cos(ϕ + ψ)

x2 = q2 = r e(−1/r2) sin(ϕ + ψ)
(8.1)

and recalling that the time scale was modified such that both the singularity and the zero-
velocity manifold are now reached in an infinite time.

By appropriately choosing the initial conditions and recalling that ε = √
µ − 1 = 1/b−1,

one can retrieve the resonance families. For example, we know that the family of loop orbits
(1:1) develops around the two periodic orbits r = R0 (see figure 4), i.e. near


x1 = (1/µ) r e(−1/r2) cos(π/2 + ψ)

x2 = r e(−1/r2) sin(π/2 + ψ)

ψ = R2
0s + ψ0

(8.2)

and 


x1 = (1/µ) r e(−1/r2) cos(3π/2 + ψ)

x2 = r e(−1/r2) sin(3π/2 + ψ)

ψ = −R2
0s + ψ0.

(8.3)

The two periodic orbits correspond to the two parent orbits of the loop family, one evolving
clockwise (C < 0), and the other anticlockwise (C > 0). Integrating the system (6.1) for



7712 C Stoica and A Font

-0.5 0 0.5

-1

-0.5

0

0.5

1

Figure 11. Orbit around the pretzel (4:3) resonance.
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Figure 12. Orbit around the (5:3) resonance.

the case ε = 0, around either (R0, π/2, ψ) or (R0, 3π/2, ψ), one retrieves a circle of radius
R0, as indicated with thick line in figure 9. The same figure shows, with dotted line, the
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orbital structure in the vicinity of the parent orbit for the case when ε = 0.1 (corresponding to
b = 0.9).

Besides the loop resonance, several other resonances can be recovered from the new system
of differential equations. We remark that under large perturbations (i.e., large deviations from
axis-symmetry), the families of minor orbits will occupy more and more of the phase space.
We do not attempt here to cover the entire phase space, but rather give a few examples of
families of minor orbits found with our new system of equations. For example, figure 10 shows
an example of an orbit around the fish (3:2) resonance, in the case ε = 0.3 (corresponding to
b = 0.7) and the initial conditions r = 0.9, ϕ = π/12 and ψ = π/8. Figure 11 shows an orbit
around the pretzel (4:3) resonance, when ε = 0.1 and r = 0.45, ϕ = 0, ψ = π/14. Figure 12
shows an orbit near the (5:3) resonance, obtained for ε = 0.3, r = 0.4, ϕ = π/12, ψ = π/6.

We note however, that these parameters should be taken only as a guidance for the location of
the resonances.

9. Conclusions

Previous numerical studies have revealed several important aspects of the orbital structure of
the logarithmic potential: the division between loop and box orbits, the presence of resonances,
the scattering effect of the singularity (which renders the box orbits unstable) and the transition
to chaos. We have performed an analytical study of the singular logarithmic potential and
proved several of these results.

We summarize our results as follows:

• We provide a description of the dynamics near the singularity and at the maximum distance
from the source permitted for a given level of energy.

• In the axis-symmetric case, we retrieve the complete global dynamics of the orbits and
describe it on a solid torus bounded by the two surfaces {r = 0} and {r = Rmax}. We
find analytically the two periodic orbits r = R0, which correspond in physical space to
the two parent families of the loop orbits (in clockwise and respectively, in anticlockwise
motion).

• In the non-axis-symmetric case, we prove that all orbits, except a negligible set, are
centrophobic—a result that has been originally discovered in the numerical study of
Miralda-Escudé and Schwarzschild [10].

• In the same non-axis-symmetric case, we show that there exist orbits which preserve the
sign of the angular momentum and retrieve the loop resonance. Finally, we also show
how several other minor family orbits can be obtained from our new system of equations.

The analytical description in general non-axis-symmetric case remains still open, several
problems requiring further investigation. One of them is the retrieval of the family of boxlet
orbits, which are known to dominate the dynamics near the singularity [10]. We conclude,
however, that under large perturbations (large deviations from axis-symmetry), most of
the phase space is occupied by orbits that slip in between the stable manifold of C1 and
the unstable manifold of C2 and wind around indefinitely. Most of these orbits pertain to the
family of the boxlet orbits. Some of these winding orbits may be closed and would lie at
the origin of the resonant families observed experimentally. Further work in this direction
will have to include an in-depth analysis of resonances in the (x1, x2) variables and a Fourier
expansion of the periodic solutions for r(s).

Another aspect that remains to be clarified is the existence of the stochastic orbits near
the singularity and the transition to chaos. The analytical study in this case is hindered by the
fact that the system given by the Hamiltonian (2.1) does not admit any hyperbolic equilibrium
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points, and therefore, the perturbative methods which are usually employed in proving the
existence of chaos (including the Melnikov method [9]) become unapplicable. We note that the
Melnikov method has been used in the past in the case of the logarithmic potential [5], however
not on the exact Hamiltonian, but on the integrable Stäckel Hamiltonian [12]. Understanding
the onset of chaos in the singular logarithmic potential is a very important problem for the
construction of galaxy models based on libraries of orbits (see, for example, [14]), in which
generally, it is a priori assumed that the stochastic orbits play a negligible role.
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